

Shielded Cable Trays.
Shielded backplanes for Transformer and Power rooms.

# LOW FREQUENCY ELECTRO-MAGNETIC SHIELDING SOLUTIONS





| WHY SHIELDING                                                     | 3  |
|-------------------------------------------------------------------|----|
| GENERAL DESCRIPTION                                               | 3  |
| SHIELDMAX                                                         | 4  |
| EFFECT OF ELECTROMAGNETIC FIELDS ON PEOPLE                        | 5  |
| EMF EFFECTS ON ELECTRONIC EQUIPMENT                               | 6  |
| EMF EFFECTS ON HUMAN BEINGS                                       | 7  |
| ORIGIN OF EMF AND SOURCES                                         | 8  |
| BENEFITS                                                          | 8  |
| SHIELDING TECHNOLOGY                                              | 9  |
| MAGNETIC FIELD LOW FREQ.: HYBRID TECHNOLOGY                       | 9  |
| LIMITS AND STANDARDS                                              | 10 |
| MAGNETIC AND ELECTRIC FIELD LOW FREQUENCY                         | 10 |
| NORMS: EN61000-4-8                                                | 10 |
| RECOMMENDATIONS                                                   | 10 |
| NCRP DRAFT RECOMMENDATIONS ON EMF EXPOSURE GUIDELINES             | 10 |
| GENERAL APPLICATIONS                                              | 11 |
| HOW TO PROTECT PEOPLE AND ELECTRONICS FROM ELECTROMAGNETIC FIELDS | 11 |
| BENEFITS OF EMC BUILDING                                          | 11 |
| SELECTION GUIDE                                                   | 18 |
| ATTENUATION TEST                                                  | 19 |
| MECHANICAL WEIGHT PERFORMANCE                                     | 19 |
| OVERLAPPING                                                       | 20 |
| VENTILATION                                                       | 20 |



| MODELS & DIMENSIONS                       | 21 |
|-------------------------------------------|----|
| INSTALLATION GUIDE                        | 25 |
| APPLICATIONS AND INSTALLATIONS EXAMPLES   | 26 |
| MAGNETIC AND ELECTRIC FIELD LOW FREQUENCY | 26 |
| SELECTION GUIDE                           | 27 |
| SELECTION GUIDE                           | 28 |
| Models and Dimensions                     | 28 |
| REF. NUMBER (EXAMPLE)                     | 28 |
| FLAT AND CORNER PLANES                    | 28 |
| INSTALLATION GUIDE                        | 28 |
| APPLICATIONS AND INSTALLATION EXAMPLES    | 30 |
| MODELS AND DIMENSIONS                     | 31 |
| INSTALLATION GUIDE                        | 32 |
| APPLICATIONS AND INSTALLATION EXAMPLES    | 35 |
| DISTRIBUTION LINES AND SHIELDING CHANNELS | 13 |
| DESCRIPTION OF SHIELDING MATERIALS        | 15 |
| CERTIFICATES                              | 36 |



## TUTORIAL

## WHY SHIELDING General Description

Electro Magnetic Fields (EMF) generated by high power cables and bus-bars are a growing concern and a technical challenge to Consultants, Facility Managers and people in general, world-wide, in many facilities and buildings, due to new restricting EMF emission standards that limit continous exposure to people and machines due to health and performance issues.

ShieldMax technology is the result of years of experience and over 500 successful installations that have provided the know-how to standarize high-performance EMF ShieldMax products presented in this catalog.

Continuous exposure to Low Frequency Electro Magnetic Fields (EMF), caused by high power electric loads, as high power cables, alter the normal functioning of electronic equipment and affects human beings health.

15% of electronic equipment failures (such as servers, electro-medical, PLCs... malfunction) or communication networksÅL underperformance are reported to be caused by EMF .



EMF related problems are growing rapidly as per increasing power consumption in any building, creating more EMF sources and at the same time, affecting more people, as per space scarcety and proximity to such loads.

EMF exposure is limited by various compulsory norms:

- Electronic equipment and Machinery: Limit of Magnetic Field exposure by norm IEC/EN 61000-4-8 is 3,75 uT (microTeslas) and is complusory to provide an environment with less than such level to ensure the secure and good performance of every-day-more-sensitive electronics and machinery. Norm IEC/EN 61000-4-3 establishes for sensitive electronics < 1 v/m limit exposure to high frequency EMF.

- Human Beings: limit of EMF continous exposure by NCRP to  $1\mu$ T, must be observed to ensure peopleÅLs safety and avoid any health risk.

| Others 6 %<br>Transmission problem<br>Server Crash 16 %<br>Data Corruption 16 % | ns 10 %                                                                                                                                 | Scre<br>Syst                                                                                | Ori<br>45<br>40<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90 | gin of Hardware Failures                                                                                                                | <ul> <li>(%)</li> <li>Power</li> <li>Air Conditioning</li> <li>Electromagneticc<br/>Fields</li> <li>Air Purity</li> <li>Hardware</li> <li>Others</li> </ul> |
|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EMF Source:<br>three phase<br>POWER CABLE<br>(Amps)                             | Minimum safe<br>distance for<br>computers,<br>electronic<br>equipment and<br>machinery as per<br>IEC/EN standard<br>(in meters) <3,75µT | Minimum safe<br>distance for<br>Human Beings<br>as per NCRP<br>standard<br>(in meters) <1µT | EMF Source:<br>three phase<br>BUSBAR (Amps)                                                   | Minimum safe<br>distance for<br>computers,<br>electronic<br>equipment and<br>machinery as per<br>IEC/EN standard<br>(in meters) <3,75µT | Minimum safe<br>distance to<br>Human Beings<br>as per NCRP<br>standard<br>(in meters) <1µT                                                                  |
| 100 A                                                                           | 1,35                                                                                                                                    | 2,6                                                                                         | 100 A                                                                                         | 0,46                                                                                                                                    | 0,89                                                                                                                                                        |
| 300 A                                                                           | 1,60                                                                                                                                    | 3,2                                                                                         | 300 A                                                                                         | 0,8                                                                                                                                     | 1,54                                                                                                                                                        |
| 500 A                                                                           | 3,03                                                                                                                                    | 5,8                                                                                         | 500 A                                                                                         | 1,32                                                                                                                                    | 2,0                                                                                                                                                         |
| 1000 A                                                                          | 4,29                                                                                                                                    | 8,31                                                                                        | 1000 A                                                                                        | 1,46                                                                                                                                    | 2,82                                                                                                                                                        |
| 3.000 A                                                                         | 5,26                                                                                                                                    | 10,1                                                                                        | 3.000 A                                                                                       | 2,52                                                                                                                                    | 4,89                                                                                                                                                        |
| 5.000 A                                                                         | 9,6                                                                                                                                     | 18,6                                                                                        | 5.000 A                                                                                       | 3,26                                                                                                                                    | 6,32                                                                                                                                                        |

## ShieldMax

In all domestic and business environments there are electromagnetic fields which may occur naturally, as a consequence of light itself, or which may be artificially generated by the extensive presence of electrical plants and devices. In the twentieth century, environmental exposure to artificial electromagnetic fieldshas steadily increased as a result of a huge increase in energy demand, the continuing development of wireless technologies and because of changes in communication and work practices. When people are exposed to electromagnetic fields their body absorbs energy. This causes an imbalance to the body's natural equilibrium and, while the scientific and



medical community is still looking for conclusive evidence, it is important to protect people from the possible long-term effects of electromagnetic fields.

Interest in electromagnetic pollution has increased in recent years as a result of extensive research and studies. Standards and technical documents have been drafted and specific laws approved to protect the environments most at risk, such as the work place. It is important therefore that the risk to human health be evaluated and measures taken to limit electromagnetic exposure in order to guarantee health and safety at work. As well as possible effects on human health, electromagnetic fields can create disturbance and cause interference with electronic equipment.

European legislation has therefore set limits to guarantee the adequate and safe performance of instruments. As a result, the use of appropriate screening systems is essential in all industrial processes that involve high current intensity or the use of intense electric or magnetic fields

high current intensity or the use of intense electric or magnetic fields.

This is to protect both workers and electric equipment near to the field sources

### Effect of Electromagnetic Fields on People

Electric and magnetic fields that vary over time interact with the electrically charged particles which matter is made of. Of particular interest is the interaction with biological systems ranging from basic cellular structures to complex organisms such as plants and animals.

To properly quantify the energy absorbed by a material, especially by human tissue, dosimetric quantities are used. Dosimetry expresses the current and power density and the energy absorbed per unit area or volume as defined below:

• Current density 'J': is the current flowing through a cross section of a conductor such as the human body or a part of it. It is measured in terms of A/m2.

• Density of power 'S': is used for very high frequency types of current where depth of penetration is small. It is calculated as the radiant power perpendicular to a surface divided by the same surface area and is expressed in W/m2.

• Specific energy absorption 'SA': is defined as the energy absorbed per unit of mass of biological tissue and is expressed in Joule/kg.

• Specific Absorption Rate of energy 'SAR': This is the rate of absorption of energy per unit mass of body tissue averaged over the entire body or specific parts of it. It is used to assess and eventually limit excessive energy deposition in small parts of the body resulting from particular exposure conditions. Both SAR, averaged over the whole body, as well as local body part values are used. It is measured in W/kg.



The quantities mentioned above are used as references to measure the effects on the human body and to define exposure limits. These, however, cannot be measured directly on the individual exposed to assess the intensity of radiation. Instead, measurable physical quantities

| Current density J [mA/m <sup>2</sup> ] | Symptoms                                |
|----------------------------------------|-----------------------------------------|
| J > 1000                               | Extrasystoles and fibrillation          |
| 100 < J <1000                          | Tissues stimulation: possible risks     |
| 10 < J < 100                           | Possible symptoms on the nervous system |
| 1 < 3 < 10                             | Minor effects                           |



EMF Effects on Electronic Equipment

1. Electromigration: cause broken strips and communication problems.





2. Hot Electron Effect: induced transients, provoke logic errors and destroy transistors.



3. Antennae Effect:

EMF Interference and some of the electrons are radiated, transforming the narrow strip in an antenna.



Detail of a damaged strip in an integrated circuit.

4. Image Distortion



Image Non-distorsioned



Image distorsioned by Electromagnetic Fields

5. Hardware degradation and destruction.

### EMF Effects on Human Beings

-U.V. Radiations: skin problems (reduction of Langerhans cells) and eyes.

-Infrared Radiations: thermal effects

-Radiofrequency (R.F.): thermal effects and bioelectric interferences, genetic transmission problems, nervous and heart system.

Some relevant studies conducted to date:

-National Institute of Occupational Health (Magnetic Fields and Cancer: cellular study. Bo Holmberg): research on cancer tumors and EMF exposure.

-Division of Biomedical and Behavioral Sciences, National Institute for Occupational Safety and Health (OSHA) (Cincinnati) Magnetic Field exposition in skin cells, J. Snawder, R. Edwards): research on tumor and magnetic fields of 100  $\mu$ T over a 14 day period.

-Electric Power Research Institute (Palo Alto) (Magnetic Fields and Animal Cells, J. Mc.Cann, R. Kavet, C. Rafferrty): research on tumor and magnetic field.



Note: Although none of the studies conducted to date can absolutely correlate EMF and human health effects. ShieldMax strongly recommends to apply the ALARA (As Low As Reasonable Achievable) principle in accordance with NCRP recomendation.

## Origin of EMF and Sources

#### Magnetic and Electric Field Low Frequency ( 0Hz – 100 kHz)

#### Magnetic Fields:

- Transformers
- Low Voltage Cabinets
- Low Voltage Lines (including Bus-bar and Subway cables)
- High Voltage Lines (aerial, underground)
- Railways lines, Subway Lines
- UPS
- Others: lightning, engines, electrical heaters,...

#### Electric Field:

- High Voltage Lines

#### Electric Field High Frequency (100kHz - 10GHz)

- Radars, Radio emitters, Mobile Phone Substations, AC Drives

## Benefits

Ensure the accomplishment of compulsory EMF limit standards and provide security and safety of any equipment or people nearby:

- Cable trays (providing shielding and power distribution at the same time)
- Switch cabinets
- Transformers

By

- Fully standardized products.
- Special solutions upon request.

- Provides secure environment for electronic equipment and machinery and for people.

- Certified EMF shielding performance according to IEC standards.

- Suited to any sort of building and applications: Officevbuildings, Hospitals,

vSemiconductor plants,...

- Complete turn-key solution from one single catalogvand source (trays, fasteners, supports,...)

- Easy to install.
- Suited to install in horizontal or vertical cable risers.
- Shield-Tray provides convenient air-cooling to cables.
- Various models, sizes and Shielding performance suited to different needs and applications.
- Maximum safety



- Easy to select.
- Shield-Tray segments overlapped to minimize EMF leak by Belt technique.
- Documented certification.
- CE marked.
- Earthing connection points.
- Heavy duty construction.
- Warranty 10 years.
- Anti-rust treatment

## Shielding Technology

#### Magnetic Field Low Freq.: Hybrid Technology



ShieldMax Solution consists of a cost-effective hybrid shielding technology that by the combination of high-permeability and high conductivity materials produce a double effect of EMF absortion minimizing the residual magnetic field by an "eddy current" effect that pushes back the residual field back-in.

A smart design, that overlaps all cable tray segments minimizes any EMF leakage.



## Limits and Standards

#### Magnetic and Electric Field Low Frequency

| Norms and Recommendations                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Electronic Equipment                                                                                                                                                                                                                                                                                                                       | Human Beings                                                                                                                                                                                                                                                                         |
| Magnetic Field – Low frequency                                                                                                                                                                                                                                                                                                             | Magnetic Field – Low Frequency                                                                                                                                                                                                                                                       |
| <ul> <li>★ EN/IEC 1000-4-8: Inmuty for Electronic<br/>Equipment up to 3,75 μT</li> <li>Recommendations NCRP: Max. Magnetic Field<br/>recommended 1 μT</li> <li>Requeriments Semicon Manufacturers: Magnetic Field<br/>up to 0,03 μT</li> <li>Requeriments MRI (magnetic resonance) Manufacturers:<br/>Magnetic Field up to 1 μT</li> </ul> | ICNIRP: Norm for people up to 100 μT<br>ICNIRP/ACGIH: Norm for heart problems people up<br>to 50 μT<br>* NCRP: Max. recommended level 1 μT<br>* AGNIR-HPA: Max. recommended level 0.4 μT<br>Others:<br>Countries like Switzerland, New Zeland and some states of<br>USA up to 1-2 μT |
| Others:                                                                                                                                                                                                                                                                                                                                    | Electric Field - Low Frequency                                                                                                                                                                                                                                                       |
| Real Worldwide Experience Cases: Computer Screens flicker form 0,4 $\mu T$ Magnetic Field                                                                                                                                                                                                                                                  | ICNRIP / ACGIH: Norm for people up to 5 kV/m<br>ICNRIP / ACGIH: Norm for heart problems people up<br>to 1 kV/m                                                                                                                                                                       |
| * Applicable Standard                                                                                                                                                                                                                                                                                                                      | * Applicable Standard                                                                                                                                                                                                                                                                |

## Norms: EN61000-4-8

| Test                       | Specification (max. level) | Norm        |
|----------------------------|----------------------------|-------------|
| Magnetic field<br>at 50 Hz | 3 A/m<br>3,75 μT           | EN61000-4-8 |

### Recommendations

#### NCRP Draft Recommendations on EMF Exposure Guidelines

Here below is repoduced Section 8 of the June 13, 1995, draft of the report of NCRP (National Council Radiation of Protection) Scientific Committee 89-3 on Extremely Low Frequency Electric and Magnetic Fields, which contains its conclusions and recommendations.

66 8.4.1.3 Option 3: An exposure guideline of 1 μT and 100 V/m: A considerable body of observations has documented bioeffects of fields at these strengths across the gamut from isolated cells to animals, and in man. (...). Most homes and occupational environments are within these values, but it would be prudent to assume that higher levels may constitute a health risk 99



## **General Applications**

How to protect people and electronics from ElectroMagnetic Fields



### Benefits of EMC Building

Complete protection to:

- Hardware: electronics destruction, degradation, screen flickering, hard diskc damage, ..
- Software: data loss, data corruption, network speed decrease, ...
- Human Beings: short and long term diseases, headache, migraine, child leukemia ..



## Output of MV / LV Transformers

One of the main causes of magnetic field exposure in MV / LV electrical substations is represented by the output of the LV transformer.

As shown in Fig 2, the output is equivalent to the three sections of the conductor which are spaced out the same distance as the terminals of the transformer (D) on the transformer side. They are closer together (d) on the other side, where they form the bundle of cables directed toward the LV distribution substation. The height of the cables is a parameter that can vary depending on the installation mode. The distances on the different axis (with reference to Fig 2) when magnetic induction is equal to 3  $\mu$ T (quality target) have been calculated on the basis of the nominal power and therefore on the basis of the secondary LV currents.



Fig. 2 - Graphic representation of a MV/LV transformer with the LV output pointing upwards.

The results are shown in Tables 1, 2 and 3 respectively for x, y and z. It is clear from the tables that the output LV is a substantial pollutant component and that in the case of major power supplies the distances affected can be significantly more than 10 metres.

When substations are located in the vicinity of civilian, commercial or industrial settings where the quality target must be satisfied, it is necessary to implement shielding systems for almost all power supply levels.



| Table 1. Distance if on the centre of the system s coordinates along the $\Lambda$ axis to obtain s $\mu$ |
|-----------------------------------------------------------------------------------------------------------|
|-----------------------------------------------------------------------------------------------------------|

| Rated power | Rated secondary power | h=0.5 (m) | h=0.6 (m) | h=0.7 (m) | h=0.8 (m) | h=0.9 (m) | h=1.0 (m) |
|-------------|-----------------------|-----------|-----------|-----------|-----------|-----------|-----------|
| 250         | 361                   | 2.47      | 2.69      | 2.90      | 3.09      | 3.26      | 3.43      |
| 315         | 455                   | 2.77      | 3.03      | 3.25      | 3.47      | 3.68      | 3.86      |
| 400         | 577                   | 3.13      | 3.41      | 3.68      | 3.92      | 4.14      | 4.36      |
| 500         | 722                   | 3.49      | 3.81      | 4.11      | 4.38      | 4.64      | 4.88      |
| 630         | 909                   | 3.91      | 4.28      | 4.61      | 4.92      | 5.22      | 5.49      |
| 800         | 1155                  | 4.41      | 4.82      | 5.20      | 5.55      | 5.88      | 6.19      |
| 1000        | 1443                  | 4.93      | 5.39      | 5.81      | 6.21      | 6.58      | 6.93      |
| 1250        | 1804                  | 5.50      | 6.03      | 6.50      | 6.94      | 7.35      | 7.75      |
| 1600        | 2309                  | 6.23      | 6.81      | 7.35      | 7.86      | 8.32      | 8.77      |
| 2000        | 2887                  | 6.96      | 7.61      | 8.22      | 8.78      | 9.31      | 9.81      |
| 2500        | 3608                  | 7.78      | 8.51      | 9,19      | 9.82      | 10.41     | 10.97     |

Table 2. Distance from the centre of the system's coordinates along the Y axis to obtain 3 µT.

| Rated power | Rated secondary power | h=0.5 (m) | h=0.6 (m) | h=0.7 (m) | h=0.8 (m) | h=0.9 (m) | h=1.0 (m) |
|-------------|-----------------------|-----------|-----------|-----------|-----------|-----------|-----------|
| 250         | 361                   | 3.10      | 3.14      | 3.16      | 3.20      | 3.23      | 3.26      |
| 315         | 455                   | 3.54      | 3.57      | 3.60      | 3.63      | 3.67      | 3.69      |
| 400         | 577                   | 4.10      | 4.13      | 4.16      | 4.19      | 4.22      | 4.25      |
| 500         | 722                   | 4.65      | 4.68      | 4.70      | 4.73      | 4.77      | 4.79      |
| 630         | 909                   | 5.27      | 5.30      | 5.32      | 5.35      | 5.39      | 5.41      |
| 800         | 1155                  | 6.05      | 6.08      | 6.11      | 6.14      | 6.16      | 6.20      |
| 1000        | 1443                  | 6.87      | 6.90      | 6.93      | 6.96      | 6.99      | 7.02      |
| 1250        | 1804                  | 7.86      | 7.88      | 7.90      | 7.94      | 7.96      | 7.99      |
| 1600        | 2309                  | 9.05      | 9.07      | 9.09      | 9.12      | 9.14      | 9.18      |
| 2000        | 2887                  | 10.37     | 10.39     | 10.42     | 10.45     | 10.47     | 10.50     |
| 2500        | 3608                  | 11.94     | 11.96     | 11.98     | 12.01     | 12.04     | 12.07     |

Table 3. Distance from the centre of the system's coordinates along the Z axis to obtain 3 µT.

| Rated power | Rated secondary power | h=0.5 (m) | h=0.6 (m) | h=0.7 (m) | h=0.8 (m) | h=0.9 (m) | h=1.0 (m) |
|-------------|-----------------------|-----------|-----------|-----------|-----------|-----------|-----------|
| 250         | 361                   | 3.26      | 3.36      | 3.47      | 3.59      | 3.70      | 3.82      |
| 315         | 455                   | 3.72      | 3.83      | 3.95      | 4.07      | 4.21      | 4.33      |
| 400         | 577                   | 4.29      | 4.41      | 4.54      | 4.68      | 4.81      | 4.96      |
| 500         | 722                   | 4.86      | 4.99      | 5.14      | 5.28      | 5.43      | 5.59      |
| 630         | 909                   | 5.51      | 5.66      | 5.81      | 5.97      | 6.14      | 6.32      |
| 800         | 1155                  | 6.32      | 6.48      | 6.65      | 6.82      | 7.01      | 7.20      |
| 1000        | 1443                  | 7.18      | 7.34      | 7.52      | 7.71      | 7.92      | 8.13      |
| 1250        | 1804                  | 8.17      | 8.35      | 8.54      | 8.75      | 8.96      | 9.19      |
| 1600        | 2309                  | 9.39      | 9.59      | 9.80      | 10.02     | 10.26     | 10.50     |
| 2000        | 2887                  | 10.74     | 10.94     | 11.17     | 11.40     | 11.65     | 11.92     |
| 2500        | 3608                  | 12.33     | 12.53     | 12.76     | 13.02     | 13.28     | 13.56     |

Notes:

(1) The D parameter is an average value which is not linked to any particular make of transformers.

(2) The d parameter is calculated on the basis of the diameter of the output cables.

## Distribution Lines and Shielding Channels

Unipolar power cables are commonly used for high current distribution lines in industrial and civilian environments. A classic example is the power supply of air conditioning system engines where it is common to find more cables used in parallel, adding to thousands of amperes. The exposure level caused by induction is clearly to be kept within the quality target (3  $\mu$ T), but sometimes more stringent limits are required (0.1  $\mu$ T near electronic microscopes for example).



Figure 3 shows the coloured map of the magnetic induction of a three-phase line with 400 mm2 cables with an ampacity of 605 A.

It can be seen that in order to stay below 3  $\mu$ T the distance from the centre of the line is about 1.4 m. Table 4 shows the buffer zone values associated with the induction of 3  $\mu$ T for lines up to 2000 A consisting of single core cables in parallel.



Fig. 3 - Coloured map of the magnetic induction of a three-phase line with 400 mm<sup>2</sup> cables with an ampacity of 605 A.

Table 4.

| Thermal capacity of the line<br>(A) | Nominal diameter of the conductors<br>(mm²) | Phase layout | Protection distance<br>3 μT (m) |
|-------------------------------------|---------------------------------------------|--------------|---------------------------------|
| 88                                  | 16                                          | RST          | 0.24                            |
| 117                                 | 25                                          | RST          | 0.30                            |
| 144                                 | 35                                          | RST          | 0.37                            |
| 175                                 | 50                                          | RST          | 0.45                            |
| 222                                 | 70                                          | RST          | 0.55                            |
| 269                                 | 95                                          | RST          | 0.65                            |
| 312                                 | 120                                         | RST          | 0.74                            |
| 355                                 | 150                                         | RST          | 0.83                            |
| 417                                 | 185                                         | RST          | 0.95                            |
| 490                                 | 240                                         | RST          | 1.10                            |
| 530                                 | 300                                         | RST          | 1.21                            |
| 605                                 | 400                                         | RST          | 1.39                            |
| 834                                 | 2x185                                       | RRSSTT       | 1.90                            |
| 980                                 | 2x240                                       | RRSSTT       | 2.20                            |
| 1251                                | 3x185                                       | RRRSSSTTT    | 2.85                            |
| 1470                                | 3X240                                       | RRRSSSTTT    | 3.30                            |
| 1668                                | 4X185                                       | RRRRSSSSTTTT | 3.80                            |
| 1960                                | 4X240                                       | RRRSSSSTTTT  | 4.4                             |

Shielding channels have a high shielding performance with an average screen factor of approx 30. Figure 4 shows a coloured map of the magnetic induction of a three-phase line with 400 mm2 cables with an ampacity of 605 A. The comparison with induction levels in the absence of shielding is obvious. The reduction in levels of induction involves a significant reduction in buffer zones. Table 5 shows the bands with respect to the different lines inserted into the shielding channel while Figure 4 shows the comparison between the buffer strips with and without channel shielding.





Fig. 4 - Coloured map of the magnetic induction of a three-phase line with 400 mm<sup>2</sup> cables, with an ampacity of 605 A, placed within a shielding channel.

Tabla 5.

| Thermal capacity of the line<br>(A) | Nominal diameter of the conductors<br>(mm <sup>2</sup> ) | Phase layout | Protection distance<br>3 µT (m) |
|-------------------------------------|----------------------------------------------------------|--------------|---------------------------------|
| 88                                  | 16                                                       | RST          | -                               |
| 117                                 | 25                                                       | RST          | -                               |
| 144                                 | 35                                                       | RST          | -                               |
| 175                                 | 50                                                       | RST          |                                 |
| 222                                 | 70                                                       | RST          | -                               |
| 269                                 | 95                                                       | RST          | -                               |
| 312                                 | 120                                                      | RST          |                                 |
| 355                                 | 150                                                      | RST          | 0.15                            |
| 417                                 | 185                                                      | RST          | 0.17                            |
| 490                                 | 240                                                      | RST          | 0.20                            |
| 530                                 | 300                                                      | RST          | 0.21                            |
| 605                                 | 400                                                      | RST          | 0.25                            |
| 834                                 | 2x185                                                    | RRSSTT       | 0.35                            |
| 980                                 | 2x240                                                    | RRSSTT       | 0.40                            |
| 1251                                | 3x185                                                    | RRRSSSTTT    | 0.52                            |
| 1470                                | 3X240                                                    | RRRSSSTTT    | 0.60                            |
| 1668                                | 4X185                                                    | RRRRSSSSTTTT | 0.69                            |
| 1960                                | 4X240                                                    | RRRRSSSSTTTT | 0.80                            |



Fig. 4a - Comparison between the protection distance at 3  $\mu T$  (m) with and without shielding channel.

## Description of Shielding Materials

Mitigation of the magnetic flux density is achieved for both shielding plates and shielding channels by affixing



magnetic shields made of two different materials:

- Material with high magnetic permeability.
- Material with high electrical conductivity.

The effect of incorporating both materials is clearly visible from simulations carried out using specific software that allows viewing the evolution of the field lines for the shielding materials when they are affected by a magnetic field generated by a coil. Figure 5 which also shows the progress of the field lines in the absence of a shielding system clearly demonstrates the effectiveness of the shielding materials:



Fig. 5 - Magnetic field produced by a coil in the presence and the absence of shielding.

The layer of material with high magnetic permeability eliminates magnetic induction through absorption of the magnetic field. Its behaviour is similar to a shielding "umbrella" as protection from the intensity of the magnetic field can be very high close to the shield, but tends to decrease away from it.



Fig. 6 - Magnetic field produced by a coil with ferromagnetic shielding.

The layer of material with high electrical conductivity in the presence of a variable magnetic field (induction field) becomes the site of current movement, which in turn generates a magnetic field of reaction (induced field). The combined effects of the fields, induction and induced, results in a reduction in the overall total magnetic field.





Fig. 7 - Magnetic field produced by a coil in with a conductive shield.

The layer of material with high electrical conductivity in the presence of a variable magnetic field (induction field) becomes the site of current movement, which in turn generates a magnetic field of reaction (induced field). The combined effects of the fields, induction and induced, results in a reduction in the overall total magnetic field.



## Shielded Trays (Power & Data)

## Selection guide

| Trays to protect Electronic Equipment:                |                 |       |            |       |            |       |            |       |            |                 |                 |
|-------------------------------------------------------|-----------------|-------|------------|-------|------------|-------|------------|-------|------------|-----------------|-----------------|
|                                                       | 100 A           | 30    | 0 A 0      | 50    | 0 A 0      | 11    | κA         | 3     | kA         | 5               | kΑ              |
| EMF<br>Distance<br>from the source<br>to exposed area | Cable           | Cable | Bus<br>Bar | Cable | Bus<br>Bar | Cable | Bus<br>Bar | Cable | Bus<br>Bar | Cable           | Bus<br>Bar      |
| < 0,8 meter                                           | upon<br>request | ST    | ST         | HPT   | ST         | HPT   | HPT        | UHPT  | UHPT       | upon<br>request | upon<br>request |
| 0,8 - 1,5 meters                                      | ST              | ST    | ST         | ST    | ST         | ST    | ST         | HPT   | HPT        | UHPT            | HPT             |
| >1,5 meters                                           | ST              | ST    | ST         | ST    | ST         | ST    | ST         | ST    | ST         | ST              | ST              |

 $\frac{\text{ST}\sim\text{Standard Tray}}{\text{note: chart according IEC 61000-4-8}} (Protection for electronic equipment) < 3,75 \, \mu\text{T}}$ 

| Trays to protect Human Beings:                        |                 |       |            |       |            |       |            |       |            |                 |                 |
|-------------------------------------------------------|-----------------|-------|------------|-------|------------|-------|------------|-------|------------|-----------------|-----------------|
|                                                       | 100 A           | 30    | 0 A 0      | 50    | 0 A        | 18    | κA         | 3     | kA         | 5               | kA              |
| EMF<br>Distance<br>from the source<br>to exposed area | Cable           | Cable | Bus<br>Bar | Cable | Bus<br>Bar | Cable | Bus<br>Bar | Cable | Bus<br>Bar | Cable           | Bus<br>Bar      |
| < 0,8 meter                                           | upon<br>request | HPT   | ST         | HPT   | ST         | UHPT  | HPT        | UHPT  | UHPT       | upon<br>request | upon<br>request |
| 0,8 - 1,5 meters                                      | upon<br>request | ST    | ST         | HPT   | ST         | HPT   | HPT        | UHPT  | UHPT       | upon<br>request | UHPT            |
| 1,5 - 2,5 meters                                      | ST              | ST    | ST         | ST    | ST         | ST    | ST         | HPT   | HPT        | HPT             | HPT             |
| >2,5 meters                                           | ST              | ST    | ST         | ST    | ST         | ST    | ST         | ST    | ST         | ST              | ST              |

ST ~ Standard Tray HPT ~ High Performance Tray UHPT ~ Ultra High Performance Tray note: chart according NCRP Recommendation (Protection for people) <1 µT

\* special products and dimensions available upon request



## Attenuation Test



ST ~ Standard Tray HPT ~ High Performance Tray UHPT ~ Ultra High Performance Tray
\* IEC61000-4-8 level from electronic equipment protection \*\* NCRP level from human beings protection







 ST ~ Standard Tray
 HPT ~ High Performance Tray
 UHPT ~ Ultra High Performance Tray

 \* IEC61000-4-8 level from electronic equipment protection
 \*\* NCRP level from human beings protection

## Mechanical Weight Performance





## Design Highlights



- Easy Access
- Easy Installation
- Safe Cable Installation - Maximum EMF Protection
- Cooling

## Overlapping



## Ventilation

EN 66004 / 66231 / 66346 BS 6004 / 6231 / 6346

| Current-Carrying Capacity Amps |                                                      |                              |  |  |  |  |
|--------------------------------|------------------------------------------------------|------------------------------|--|--|--|--|
| Conductor Cross                | Correction factor referred<br>to reference method 11 |                              |  |  |  |  |
| (mm <sup>2</sup> )             | 2 cables<br>Single-Phase                             | 3 or 4 cables<br>Three-Phase |  |  |  |  |
| >25                            | 0,94                                                 | 0,93                         |  |  |  |  |





## Models & Dimensions



Straight Segments (all dimensions in mm)

#### Ref. Number (example) Straight Segment

Problem: Three phases cable of 1000 Amps, 10 meters length (straight) running (at 1 meter distance) from office area. Question: What shielded tray should be installed to protect people (human beings)?

| Answer: | 10 units x | Shielding performance | length | straigth | Width (A) - Height (B) |
|---------|------------|-----------------------|--------|----------|------------------------|
|         | 10 units x | UHPT                  | 1000   | S        | 515 - 100              |

| Standard Performa | Standard Performance Tray (at dimensions in mm.) |                   |                  |                   |                       |  |  |  |
|-------------------|--------------------------------------------------|-------------------|------------------|-------------------|-----------------------|--|--|--|
| s                 | A <sub>(Ba</sub>                                 | <sub>ise)</sub> B | с <sub>(Со</sub> | <sub>ver)</sub> D | Weigth (kg.)          |  |  |  |
|                   | 115                                              | 50 / 100 / 200    | 147              | 70 / 120 / 220    | 2,10 / 2,84 / 4,46 /  |  |  |  |
| ST                | 215                                              | 50 / 100 / 200    | 247              | 70 / 120 / 220    | 2,85 / 3,65 / 5,27    |  |  |  |
| 300               | 315                                              | 50 / 100 / 200    | 347              | 70 / 120 / 220    | 3,65 / 4,46 / 6,08    |  |  |  |
|                   | 415                                              | 50 / 100 / 200    | 447              | 70 / 120 / 220    | 4,46 / 5,27 / 6,89    |  |  |  |
|                   | 515                                              | 50 / 100 / 200    | 547              | 70 / 120 / 220    | 5,27 / 6,10 / 7,70    |  |  |  |
|                   |                                                  |                   |                  |                   |                       |  |  |  |
|                   | 115                                              | 50 / 100 / 200    | 147              | 70 / 120 / 220    | 3,39 / 4,74 / 7,44    |  |  |  |
| ST                | 215                                              | 50 / 100 / 200    | 247              | 70 / 120 / 220    | 4,74 / 6,10 / 8,79    |  |  |  |
| 500               | 315                                              | 50 / 100 / 200    | 347              | 70 / 120 / 220    | 6,10 / 7,44 / 10,14   |  |  |  |
|                   | 415                                              | 50 / 100 / 200    | 447              | 70 / 120 / 220    | 7,44 / 8,80 / 11,49   |  |  |  |
|                   | 515                                              | 50 / 100 / 200    | 547              | 70 / 120 / 220    | 8,79 / 10,15 / 12,84  |  |  |  |
|                   |                                                  |                   |                  |                   |                       |  |  |  |
|                   | 115                                              | 50 / 100 / 200    | 147              | 70 / 120 / 220    | 6,77 / 9,50 / 14,88   |  |  |  |
| ST                | 215                                              | 50 / 100 / 200    | 247              | 70 / 120 / 220    | 9,47 / 12,17 / 17,58  |  |  |  |
| 1000              | 315                                              | 50 / 100 / 200    | 347              | 70 / 120 / 220    | 12,17 / 14,87 / 20,28 |  |  |  |
|                   | 415                                              | 50 / 100 / 200    | 447              | 70 / 120 / 220    | 14,87 / 17,60 / 22,98 |  |  |  |
|                   | 515                                              | 50 / 100 / 200    | 547              | 70 / 120 / 220    | 17,57 / 20,30 / 25,68 |  |  |  |



| High Performance | High Performance Tray (all dimensions in mm.) |                   |                  |                |                       |  |  |  |
|------------------|-----------------------------------------------|-------------------|------------------|----------------|-----------------------|--|--|--|
| s                | A <sub>(B</sub> ;                             | <sub>ise)</sub> B | с <sub>(Со</sub> | ver) D         | Weigth (kg.)          |  |  |  |
|                  | 115                                           | 50 / 100 / 200    | 160              | 75 / 125 / 225 | 4,25 / 5,87 / 9,11    |  |  |  |
| HPT              | 215                                           | 50 / 100 / 200    | 260              | 75 / 125 / 225 | 5,87 / 7,50 / 10,73   |  |  |  |
| 300              | 315                                           | 50 / 100 / 200    | 360              | 75 / 125 / 225 | 7,50 / 9,10 / 12,35   |  |  |  |
|                  | 415                                           | 50 / 100 / 200    | 460              | 75 / 125 / 225 | 9,11 / 10,70 / 13,97  |  |  |  |
|                  | 515                                           | 50 / 100 / 200    | 560              | 75 / 125 / 225 | 10,73 / 12,35 / 15,59 |  |  |  |
|                  |                                               |                   |                  |                |                       |  |  |  |
|                  | 115                                           | 50 / 100 / 200    | 160              | 75 / 125 / 225 | 7,10 / 9,80 / 15,19   |  |  |  |
| HPT              | 215                                           | 50 / 100 / 200    | 260              | 75 / 125 / 225 | 9,80 / 12,50 / 17,89  |  |  |  |
| 500              | 315                                           | 50 / 100 / 200    | 360              | 75 / 125 / 225 | 12,50 / 15,20 / 20,59 |  |  |  |
|                  | 415                                           | 50 / 100 / 200    | 460              | 75 / 125 / 225 | 15,20 / 17,90 / 23,29 |  |  |  |
|                  | 515                                           | 50 / 100 / 200    | 560              | 75 / 125 / 225 | 17,90 / 20,60 / 25,59 |  |  |  |
|                  |                                               |                   |                  |                |                       |  |  |  |
|                  | 115                                           | 50 / 100 / 200    | 160              | 75 / 125 / 225 | 14,17 / 19,57 / 30,38 |  |  |  |
| HPT              | 215                                           | 50 / 100 / 200    | 260              | 75 / 125 / 225 | 19,57 / 25,00 / 35,78 |  |  |  |
| 1000             | 315                                           | 50 / 100 / 200    | 360              | 75 / 125 / 225 | 25,00 / 30,37 / 41,18 |  |  |  |
|                  | 415                                           | 50 / 100 / 200    | 460              | 75 / 125 / 225 | 30,37 / 35,77 / 46,58 |  |  |  |
|                  | 515                                           | 50 / 100 / 200    | 560              | 75 / 125 / 225 | 35,77 / 41,20 / 51,98 |  |  |  |

| Ultra High Perforn | Ultra High PerformanceTray (all dimensions in mm.) |                   |                  |                |                        |  |  |  |  |
|--------------------|----------------------------------------------------|-------------------|------------------|----------------|------------------------|--|--|--|--|
| S                  | A <sub>(Ba</sub>                                   | <sub>ise)</sub> B | с <sub>(Со</sub> | ver) D         | Weigth (kg.)           |  |  |  |  |
|                    | 115                                                | 50 / 100 / 200    | 185              | 85 / 135 / 235 | 9,23 / 12,50 / 18,95   |  |  |  |  |
| UHPT               | 215                                                | 50 / 100 / 200    | 285              | 85 / 135 / 235 | 12,47 / 15,70 / 22,19  |  |  |  |  |
| 300                | 315                                                | 50 / 100 / 200    | 385              | 85 / 135 / 235 | 15,71 / 19,00 / 25,43  |  |  |  |  |
|                    | 415                                                | 50 / 100 / 200    | 485              | 85 / 135 / 235 | 19,00 / 22,20 / 28,67  |  |  |  |  |
|                    | 515                                                | 50 / 100 / 200    | 585              | 85 / 135 / 235 | 22,20 / 25,40 / 31,91  |  |  |  |  |
|                    |                                                    |                   |                  |                |                        |  |  |  |  |
|                    | 115                                                | 50 / 100 / 200    | 185              | 85 / 135 / 235 | 15,40 / 20,80 / 31,59  |  |  |  |  |
| UHPT               | 215                                                | 50 / 100 / 200    | 285              | 85 / 135 / 235 | 20,80 / 26,20 / 36,99  |  |  |  |  |
| 500                | 315                                                | 50 / 100 / 200    | 385              | 85 / 135 / 235 | 26,20 / 31,60 / 42,39  |  |  |  |  |
|                    | 415                                                | 50 / 100 / 200    | 485              | 85 / 135 / 235 | 31,60 / 37,00 / 47,79  |  |  |  |  |
|                    | 515                                                | 50 / 100 / 200    | 585              | 85 / 135 / 235 | 37,00 / 42,40 / 53,19  |  |  |  |  |
|                    |                                                    |                   |                  |                |                        |  |  |  |  |
|                    | 115                                                | 50 / 100 / 200    | 185              | 85 / 135 / 235 | 30,80 / 41,60 / 63,18  |  |  |  |  |
| UHPT               | 215                                                | 50 / 100 / 200    | 285              | 85 / 135 / 235 | 41,60 / 52,40 / 73,98  |  |  |  |  |
| 1000               | 315                                                | 50 / 100 / 200    | 385              | 85 / 135 / 235 | 52,40 / 63,20 / 84,78  |  |  |  |  |
|                    | 415                                                | 50 / 100 / 200    | 485              | 85 / 135 / 235 | 63,20 / 74,00 / 95,58  |  |  |  |  |
|                    | 515                                                | 50 / 100 / 200    | 585              | 85 / 135 / 235 | 73,80 / 84,80 / 106,38 |  |  |  |  |









| Standard Performance Tray (all dimensions in mm.) |          |                |                  |                |                       |  |  |
|---------------------------------------------------|----------|----------------|------------------|----------------|-----------------------|--|--|
| T                                                 | А<br>(В: | ise) B         | с <sub>(Со</sub> | ver) D         | Weigth (kg.)          |  |  |
|                                                   | 115      | 50 / 100 / 200 | 147              | 70 / 120 / 220 | 5,36 / 7,23 / 10,98   |  |  |
|                                                   | 215      | 50 / 100 / 200 | 247              | 70 / 120 / 220 | 8,59 / 10,47 / 14,22  |  |  |
| ST 45                                             | 315      | 50 / 100 / 200 | 347              | 70 / 120 / 220 | 12,57 / 14,45 / 18,20 |  |  |
| R/L                                               | 415      | 50 / 100 / 200 | 447              | 70 / 120 / 220 | 17,31 / 19,18 / 22,93 |  |  |
|                                                   | 515      | 50 / 100 / 200 | 547              | 70 / 120 / 220 | 22,79 / 24,66 / 28,41 |  |  |
|                                                   |          |                |                  |                |                       |  |  |
|                                                   | 115      | 50 / 100 / 200 | 147              | 70 / 120 / 220 | 6,01 / 7,89 / 11,64   |  |  |
|                                                   | 215      | 50 / 100 / 200 | 247              | 70 / 120 / 220 | 10,60 / 12,48 / 16,23 |  |  |
| ST 90                                             | 315      | 50 / 100 / 200 | 347              | 70 / 120 / 220 | 16,69 / 18,57 / 22,39 |  |  |
| R/L                                               | 415      | 50 / 100 / 200 | 447              | 70 / 120 / 220 | 24,28 / 26,16 / 29,91 |  |  |
|                                                   | 515      | 50 / 100 / 200 | 547              | 70 / 120 / 220 | 33,37 / 35,25 / 39,00 |  |  |

| High Performance Tray (all dimensions in mm.) |                  |                |                  |                   |                       |  |  |
|-----------------------------------------------|------------------|----------------|------------------|-------------------|-----------------------|--|--|
| T                                             | A <sub>(Ba</sub> | ase) B         | c <sub>(Co</sub> | <sub>ver)</sub> D | Weigth (kg.)          |  |  |
|                                               | 115              | 50 / 100 / 200 | 160              | 75 / 125 / 225    | 6,48 / 8,63 / 12,93   |  |  |
|                                               | 215              | 50 / 100 / 200 | 260              | 75 / 125 / 225    | 10,24 / 12,39 / 16,69 |  |  |
| HPT 45                                        | 315              | 50 / 100 / 200 | 360              | 75 / 125 / 225    | 14,86 / 17,01 / 21,31 |  |  |
| R/L                                           | 415              | 50 / 100 / 200 | 460              | 75 / 125 / 225    | 20,35 / 20,50 / 26,80 |  |  |
|                                               | 515              | 50 / 100 / 200 | 560              | 75 / 125 / 225    | 26,69 / 28,84 / 33,14 |  |  |
|                                               |                  |                |                  |                   |                       |  |  |
|                                               | 115              | 50 / 100 / 200 | 160              | 75 / 125 / 225    | 7,31 / 9,46 / 13,76   |  |  |
|                                               | 215              | 50 / 100 / 200 | 260              | 75 / 125 / 225    | 12,69 / 14,84 / 19,14 |  |  |
| HPT 90                                        | 315              | 50 / 100 / 200 | 360              | 75 / 125 / 225    | 19,78 / 21,93 / 26,23 |  |  |
| R/L                                           | 415              | 50 / 100 / 200 | 460              | 75 / 125 / 225    | 28,60 / 30,75 / 35,03 |  |  |
|                                               | 515              | 50 / 100 / 200 | 560              | 75 / 125 / 225    | 39,13 / 41,28 / 45,58 |  |  |

| Ultra High Perform | Ultra High PerformanceTray (all dimensions in mm.) |                   |                  |                   |                       |  |  |  |  |
|--------------------|----------------------------------------------------|-------------------|------------------|-------------------|-----------------------|--|--|--|--|
| т                  | A <sub>(Ba</sub>                                   | <sub>ise)</sub> B | с <sub>(Со</sub> | <sub>wer)</sub> D | Weigth (kg.)          |  |  |  |  |
|                    | 115                                                | 50 / 100 / 200    | 185              | 85 / 135 / 235    | 8,98 / 11,68 / 17,08  |  |  |  |  |
|                    | 215                                                | 50 / 100 / 200    | 285              | 85 / 135 / 235    | 13,84 / 16,54 / 21,94 |  |  |  |  |
| UHPT 45            | 315                                                | 50 / 100 / 200    | 385              | 85 / 135 / 235    | 19,78 / 22,48 / 27,88 |  |  |  |  |
| R/L                | 415                                                | 50 / 100 / 200    | 485              | 85 / 135 / 235    | 26,80 / 29,50 / 34,90 |  |  |  |  |
|                    | 515                                                | 50 / 100 / 200    | 585              | 85 / 135 / 235    | 34,90 / 37,60 / 43,00 |  |  |  |  |
|                    |                                                    |                   |                  |                   |                       |  |  |  |  |
|                    | 115                                                | 50 / 100 / 200    | 185              | 85 / 135 / 235    | 10,26 / 12,96 / 18,36 |  |  |  |  |
|                    | 215                                                | 50 / 100 / 200    | 285              | 85 / 135 / 235    | 17,28 / 19,98 / 25,38 |  |  |  |  |
| UHPT 90            | 315                                                | 50 / 100 / 200    | 385              | 85 / 135 / 235    | 26,46 / 29,16 / 34,56 |  |  |  |  |
| R/L                | 415                                                | 50 / 100 / 200    | 485              | 85 / 135 / 235    | 37,80 / 40,50 / 45,90 |  |  |  |  |
|                    | 515                                                | 50 / 100 / 200    | 585              | 85 / 135 / 235    | 51,30 / 54,00 / 59,40 |  |  |  |  |



## Installation guide



Note: Cable tray must be connected to ground with 25 mm<sup>2</sup> copper cable

#### Supports (manufactured by HILTI)

Fixing supports to concrete ceiling



|   |   | Description                         | Reference<br>(HILTI) | Screws   | Length<br>(mm) | Screws        |
|---|---|-------------------------------------|----------------------|----------|----------------|---------------|
| ſ | 1 | Fastener or concrete                | ML-B-30/220          | 307129/7 | 220            | M8x30         |
|   | 1 | rustener of contrete                | ML-B-30/350          | 307130/5 | 350            | M8x60 (ind.)  |
|   | 2 | Corners support<br>and screws       | ML-A-90              | 307128/9 | 44             | M8x10 (incl.) |
|   | 3 | vertical and<br>horitzontal support | ML-C-30              | 307120/6 | 2000           | NO            |

#### Distance between supports



2 supports for each straight segment or curve segment S: length of straight segment D: S/2 Note: joints must be separated from fixing supports to concrete ceiling

Important exception:

Models: UHTP 1000 S 515 or UHTP 1000 S 415 must be fixed with 3 supports



## Applications and Installations Examples Magnetic and Electric Field Low Frequency

#### 1. Hospitals:

protection of the sensible equipment (Magnetic Resonance Room (MRI) and surroundings, X-Ray Room,...) and people.



#### 2. Offices and Residential Buildings:

electronic equipment (computers, servers,...) and people protection (e.g. High Voltage Lines, Subway,...).



#### 3. Factories:

offices near production lines, machines (e.g. electric welding), transformers, Electrical Switchboards,...









#### 6. Airports: communication rooms, racks rooms,....



7. Pharmaceutical and Bio-tech Labs.



## **Shielded Backplanes**

## Selection guide

| Distance to<br>Source exposed area | 200 amps      | 600 amps                | 1000 amps    | 2000 amps | 3000 amps |
|------------------------------------|---------------|-------------------------|--------------|-----------|-----------|
| < 0,8 meter                        | HPP           | HPP                     | HPP          | UHPP      | UHPP      |
| 0,8 - 1,5 meters                   | SPP           | SPP                     | SPP          | HPP       | HPP       |
| > 1,5 meters                       | SPP           | SPP                     | SPP          | SPP       | SPP       |
| CDD Clauderd UDD US                | h Desfermence | LILLING LILLing LEads R | - former and | -         |           |

SPP ~ Standard HPP ~ High Performance UHPP ~ Ultra High Perform note: chart according IEC 61000-4-8 (Protection for electronic equipment) <3,75 μT

| Distance to<br>Source exposed area | 200 amps | 600 amps | 1000 amps | 2000 amps | 3000 amps |
|------------------------------------|----------|----------|-----------|-----------|-----------|
| < 0,8 meter                        | HPP      | UHPP     | UHPP      | UHPP      | UHPP      |
| 0,8 - 1,5 meters                   | HPP      | HPP      | HPP       | UHPP      | UHPP      |
| > 1,5 meters                       | SPP      | SPP      | SPP       | SPP       | SPP       |

SPP ~ Standard HPP ~ High Performance UHPP ~ Ultra High Performance note: chart according NCRP Recommendation (Protection for people) <1 μT

\* special products and dimensions available under request



## Selection guide

### Models and Dimensions

(all dimensions in mm)



## Ref. Number (example)

Flat and corner planes

Problem: Electrical cabinet (2x2 meters) 1000 Amps (at 1 meter distance) from office area. Question: Which backplanes should be installed to protect people (human beings)?

| Answer: |           | Shielding performance | length (T) | Flat / Corner | width (S) |
|---------|-----------|-----------------------|------------|---------------|-----------|
|         | 4 units x | UHPP                  | 1000       | F             | 1000      |

## Installation Guide

Installation method depends on wall material.

If wall is made of brick or concrete, shielding panels will be fixed directly to wall with screws.

In case of wall is made of gypsum wall, panels must be fixed with screws and special nuts.

NOTE: Panels must be connected to ground with 25 mm2 copper wire.





## Applications and Installation Examples

#### Magnetic and Electric Field Low Frequency

1. Hospitals:

Resonance Room (MRI) and surroundings, X-Ray Room,...) and people.



2. Offices and Residential Buildings: electronic equipment (computers, servers,...) and people protection (e.g. High Voltage Lines, Subway,...).



#### 3. Factories:

offices near production lines, machines (e.g. electric welding), transformers, Electrical Switchboards,...



4. Telecom rooms / Network centers / Data Centers / Back-up Rooms (with an electrical switchboards nearby)



#### 5. Airports:

communication rooms, racks rooms,...



6. Pharmaceutical and Bio-tech Labs. (electrical switchboards aside)



7. Buildings (High voltage lines protection)





## Shielded Transformers Cages

#### Selection Guide

| Distance to<br>Source exposed area | 200 kVA          | 600 kVA               | 1000 kVA    | 2000 kVA | 3000 kVA |
|------------------------------------|------------------|-----------------------|-------------|----------|----------|
| < 0,8 meter                        | HPTC             | HPTC                  | HPTC        | UHPTC    | UHPTC    |
| 0,8 - 1,5 meters                   | SPTC             | SPTC                  | SPTC        | HPTC     | HPTC     |
| > 1,5 meters                       | SPTC             | SPTC                  | SPTC        | SPTC     | SPTC     |
| SPTC - Standard HPTC -             | ligh Performance | HUNDER - Hitten Might | Performance |          |          |

SPTC ~ Standard HPTC ~ High Performance UHPTC ~ Ultra High Performance note: chart according IEC 61000-4-8 (Protection for electronic equipment) <3,75 μT

| EMF Source<br>Source exposed area | 200 kVA          | 600 kVA            | 1000 kVA    | 2000 kVA | 3000 kVA |
|-----------------------------------|------------------|--------------------|-------------|----------|----------|
| < 0,8 meter                       | HPTC             | UHPTC              | UHPTC       | UHPTC    | UHPTC    |
| 0,8 - 1,5 meters                  | HPTC             | HPTC               | HPTC        | UHPTC    | UHPTC    |
| > 1,5 meters                      | SPTC             | SPTC               | SPTC        | SPTC     | SPTC     |
| SPTC ~ Standard HPTC ~ H          | ligh Performance | UHPTC ~ Ultra High | Performance |          |          |

SPTC ~ Standard HPTC ~ High Performance UHPTC ~ Ultra High Perfor note: chart according NCRP Recommendation (Protection for people) <1 µT

\* special products and dimensions available under request

## Models and Dimensions



## Ref. Number (example)

Answ

Problem: Transformer 2000 KVA (at 1 meter distance) from office area.

Question: Which backplanes should be installed to protect people (human beings)?

| er: |           | Shielding performance | length (T) | Flat / Corner | width (S) |
|-----|-----------|-----------------------|------------|---------------|-----------|
|     | 4 units x | UHPTC                 | 1000       | F             | 1000      |



## Installation Guide

There are 3 different kind of installations for shielding transformers:

- Wall protection (side)
- Ceiling protection
- Complete protection (walls and ceiling)





\* Self standing structure quoted under request





#### **Ceiling protection**

For ceiling installation, it will be necessary to mount some structure in order to support all pieces.

The distance between ceiling and structure must be at least 300 mm. and between transformer and structure at least 500 mm. in order to ensure good ventilation.

Structure consists in tubular galvanized steel with square section (80 x 80). Separation between beams is aprox. 1000 mm, same as width of pieces. See the picture beside.

NOTE: structure must be connected to ground with 25 mm<sup>2</sup> copper wire

#### **Complete protection**

The complete protection against magnetic fields in transformers consists on shielding walls and ceiling.

In order to support all shield panels is necessary to mount the appropiate steel structure.

The distance between ceiling and structure must be at least 300 mm. and between transformer and structure at least 500 mm. in order to ensure good ventilation. Distance between wall and structure must be at least 500 mm and between structure and transformer must be at least 500 mm in order to let free space for maintenance facilities.



The steel beams are separated 1000 mm. aprox.

Wall panels must be fixed to structure with 6 screws and 6 nuts as minimum.

Ceiling panels must be fixed to structure with 4 screws and 4 nuts as minimum.

"L" shielded panels sections must be placed on structure corners.

NOTE: structure must be connected to ground with 25 mm<sup>2</sup> copper wire.







## Applications and Installation Examples

1. Hospitals: protection of the sensible equipment (Magnetic Resonance Room (MRI) and surroundings, X-Ray Room,...) and people.



3. Factories: offices near transformers



5. Airports and Banks: communication racks, transformer room, ...

2. Offices and Residential Buildings: electronic equipment (computers, servers,...) and people protection (transformer,...).



4. Telecom rooms / Network centers / Data Centers / Back-up Rooms (transformer aside)



6. Pharmaceutical and Bio-tech Labs. (transformer rooms)







## Certificates

| 000 DECLA                                                                                                               | RATION OF CONFORMITY                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The company:                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ADVANCED SHIELDING                                                                                                      | TECHNOLOGIES EUROPE S.L.                                                                                                                                                                                                                                                                                                                                                                                                                      |
| declare, that the product                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| complies with the following standard<br>EC 91000-44                                                                     | ir ar normative documenter<br>Electronic equipment immunity from<br>electromagnetic fields                                                                                                                                                                                                                                                                                                                                                    |
| compiles with the following standard<br>EC 61000-4-8<br>EC 61537                                                        | r an normative documents:<br>Electronic equipment immunity from<br>electromagnetic fields<br>Cable Tray Systems and Cable<br>Ladder Systems for Cable<br>Management                                                                                                                                                                                                                                                                           |
| complies with the following standard<br>EC 91000-4-8<br>EC 91537<br>WPA 70                                              | i an normative documents:<br>Electronic equipment immunity from<br>electromagnetic fields<br>Cable Try Systems and Cable<br>Ladder Systems for Cable<br>Management<br>Rational Electrical Code, Article 382:<br>Cable Trays: provide UK,<br>Classification and labels.                                                                                                                                                                        |
| complies with the following standard<br>EC 41000-4-8<br>EC 41537<br>IEPA 70<br>IEPA 70<br>IEPA VE 1-CSA C22.2 No. 126.1 | i an normative documentar:<br>Electronic explorment instantity from<br>electronegament fields<br>Cable Tray Systems and Cable<br>Lobber Systems for Cable<br>Management<br>Apriced Electrical Code, Article 392:<br>Cable Trays provide UL<br>Cable Trays provide UL<br>Cable Trays provide UL<br>Cable Trays provide UL<br>Metal Cable Tray Systems, for<br>materials, uses, and codegarations,<br>provide CCAAn Certificate and<br>tablets. |

#### SHIELDING PERFORMANCE CERTIFICATE





# info@shieldmax.net

# T +34 931 122 538

# www.shieldmax.net



Copyright: FlexVPC S.L. 2020